Almost Everywhere Convergence Of Convolution Powers Without Finite Second Moment

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost Everywhere Convergence of Series in L

We answer positively a question of J. Rosenblatt (1988), proving the existence of a sequence (ci) with ∑∞ i=1 |ci| = ∞, such that for every dynamical system (X,Σ, m, T ) and f ∈ L1(X), ∑∞i=1 cif(T ix) converges almost everywhere. A similar result is obtained in the real variable context.

متن کامل

Almost Everywhere Convergence of Orthogonal Expansions of Several Variables

For weighted L space on the unit sphere of R, in which the weight functions are invariant under finite reflection groups, a maximal function is introduced and used to prove the almost everywhere convergence of orthogonal expansions in h-harmonics. The result applies to various methods of summability, including the de la Vallée Poussin means and the Cesàro means. Similar results are also establi...

متن کامل

On Almost Everywhere Strong Convergence of Multidimensional Continued Fraction Algorithms

We describe a strategy which allows one to produce computer assisted proofs of almost everywhere strong convergence of Jacobi-Perron type algorithms in arbitrary dimension. Numerical work is carried out in dimension three to illustrate our method. To the best of our knowledge this is the rst result on almost everywhere strong convergence in dimension greater than two.

متن کامل

Almost Everywhere Convergence in Family of IF-events With Product

The aim of this paper is to define the lower and upper limits on the family of IF-events with product. We compare two concepts of almost everywhere convergence and we show that they are equivalent, too.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l’institut Fourier

سال: 2011

ISSN: 0373-0956,1777-5310

DOI: 10.5802/aif.2618